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It is shown that solutions to a class of diffusion equations of the two-way type may be found by a
method akin to separation of variables. The difficulty with such equations is that the boundary
data must be specified partly as initial and partly as final conditions. In contrast to the one-way
diffusion equation, where the solution separates only into decaying eigenfunctions, the two-way
equations separate into both decaying and growing eigenfunctions. Criteria are set forth for the
existence of linear eigenfunctions, which may not be found directly by separating variables. A
speculation with interesting ramifications is that the growing and decaying eigenfunctions are
separately complete in an appropriate half of the problem domain. This conjecture is not proved,

although it does enjoy some numerical support.

I. INTRODUCTION

Many physical systems may be described by what might
be called a two-way diffusion equation, which we writein the
form

3 0) _ 3 pioy 0
h©) 2 = D (O) /(. 0) ()

in the domain a < 6 < b and 0 < x < L, with D (6) assumed
positive. If 4 (8) is also positive, then Eq. (1) represents the
usual diffusion equation, which is well posed when initial
conditions are given at x = 0 and boundary conditions are
given at @ = a and 6 = b. However, in the event that 4 (6)
changes sign in the interval (g,b ), Eq. (1) then describes dif-
fusion towards increasing x where 4 is positive and diffusion
towards decreasing x where 4 is negative. Hence, we have the
nomenclature “two-way” diffusion, which is also found in
the literature as ““forward-backward” diffusion. These equa-
tions are then well-posed only when initial conditions are
given where A is positive and final conditions (i.e.,atx = L)
are given where / is negative. Consideration of these equa-
tions occurs in the literature as early as 1913."

More complicated variations of Eq. (1) may be envi-
sioned, for example, when /4 and D depend on x as well as 6.
However, we restrict our consideration to s, D, and bound-
ary conditions that are independent of x, so that Eq. (1) may
be approached by the method of separation of variables.
Also, for simplicity, we will assume, except in Sec. VIII, that
h has only isolated zeros. The goal of this paper is, in part, to
examine various subtleties arising in separating variables in
the two-way diffusion equation.

In practice the restriction on 4 and D does not exclude
most cases of interest arising in physics applications. For
example, particles impinging with velocity |v| upon an infi-
nite slab of randomly located, small-angle, elastic point-scat-
terers are governed by the diffusion equation

(g . g;) f=ad.f, 6))

where fis the particle phase space density, « is a constant,
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and 4, is the angular Laplacian operator in velocity space.
The steady-state distribution of particles along the axis of the
slab is described by’

cosf af - 9 sinf 9

dx sinf d6 a6
where @ is the angle the velocity vector makes with the x axis,
x being the distance along the slab axis normalized to
|v|/a. The range of 8 is (0,7), so that Eq. (3) is a special case
of the two-way type considered in Eq. (1).

The two-dimensional analogue of Eq. (2) occurs when
particles are scattered instead by randomly located rod scat-
terers, the rods being oriented in one direction and parallel to
the face of the slab. Instead of Eq. (3), we then get

sinf of _ a—,f ,

Ix a6~
where 6 is now the angle the velocity vector makes with the
direction perpendicular to both the slab axis and the rod
orientation. The distance along the slab axis, x, is now nor-
malized to a/v,, where v, is the particle velocity perpen-
dicular to the rod orientation and is conserved now during
scattering events. Equations (3) and (4) govern what is called
diffuse reflection. Proper boundary conditions would speci-
fy the incident particle distribution [corresponding, say, in
Eq. (4) to 8> 0] at x = 0 and would specify that only outgo-
ing particles are present at x = L. A recent problem of inter-
est governed by Eq. (4) is the scattering of plasma waves in a
tokamak by random density fluctuations aligned in rodlike
fashion along the magnetic field.”

Much of the research on two-way diffusion equations
has centered around a special case of Eq. (1), namely Eq. (3),
which was derived by Bothe.” Bethe et al.* treated this equa-
tion by using separation of variables and finding the domi-
nant behavior from the lowest eigenfunctions. A numerical
check of those conclusions has been provided by Stein and
Bernstein.® Beals® analytically proved the existence of a solu-
tion to Eq. (3) and, furthermore, proved that it could be
represented by the eigenfunction expansion proposed by

Iy )

—7<b<Tm, €3]
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Bethe et al. Considerations of other two-way equations oc-
cur in Refs. 7-11.

Our approach to the general equation, Eq. (1), is to use
separation of variables as in Ref. 4. Here, our concern is that
the resulting eigenvalue equation is not governed by the usu-
al Sturm-Liouville theorems, a situation that we seek to
remedy. The paper is organized as follows. In Sec. IT we
examine when, as Bethe ef a/. found in their case, the separa-
tion of variables solutions must be supplemented by an adi-
tional singular eigenfunction. In Sec. III we show how this
singular eigenfunction may be derived from a limiting case of
completely separable (nonsingular) two-way equations. In
Sec. IV we show that no other singular types of solutions are
possible for this class of equations. In Secs. V and VI we
prove a completeness theorem on the interval (a,b ) for the
eigenfunctions obtained by separating variables. In Sec. VII
we conjecture a further completeness property of these ei-
genfunctions and we appeal to, among other things, a nu-
merical computation that lends support to the conjecture. In
Sec. VIII we show how to extend our considerations to the
case that / vanishes over an interval. In Sec. IX we conclude
with a summary of the salient findings, including ramifica-
tions of the proved completeness theorem and the conjec-
tured completeness property.

Before concluding this introductory section, we wish to
point out that the uniqueness of the solution to Eq. (1), if it
exists, is an easy matter to show via the usual energy integral.
Since Eq. (1) is linear, it is satisfied by the difference,
¢ = f, — [, of any two supposed solutions. We multiply Eq.
(1) by ¢ and integrate over x and 6. Upon integrating by
parts in 8 on the right-hand side, the surface terms vanish for
suitable boundary conditions at 8 = @ and 6 = b [see Eq.
(7)), implying that ¢ vanishes, hence also uniqueness.

ll. SEPARATION OF VARIABLES

To solve Eq. (1) by the method of separation of varia-
bles, we attempt an expansion

f= chék )u, (@), &)
%

where ¢, is a constant, ¢, (x) = exp(kx), and u, satisfies the
eigenvalue equation

:’/’kuk(e)s[ %D(Q)Edg——kh(a) ]uk(9)=0
6)

We assume that the boundary conditions are given such that
Eq. (6) is self-adjoint, i.e., the boundary conditions are such
that

d du,
D(a)( ‘;(‘1) u (@) — ”(“) ())

b du, (b
=D(b)( A “d;)u,(b)). ™

Self-adjointness assures the existence of an orthogonality re-
lation between the u, with weighting function 4, i.e.,

Jh(ﬁ)uk(B)u,(ﬁ)zo, if k1. ®)
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The question arises whether the », found from Eq. (6)
comprise a complete set of eigenfunctions. Completeness is
not assured by the usual Sturm-Liouville'” theorems, which
donot apply when /2 vanishes in the interval (a,b ). In fact, the
u, are not, in general, complete. For example, suppose that,
as in Eq. (4), we pick D = 1, A = siné, and we try to use the
eigenfunctions calculated from Eq. (6) to describe £(6 ) such
that

"

f(@)sindd6=J #0. C))

Since all the u, are orthogonal to sind, any function repre-
sented as a linear combination of the «, must have J = 0.
Hence, an f characterized by Eq. (9) is not representable,
implying that the set {u, ] is not complete. It turns out, how-
ever, that supplementing the set { u, } with sinf does produce
a complete set of functions. This assertion will be proved in
Sec. V.

More generally, suppose that there exists a function g
obeying the boundary conditions of the eigenvalue Eq. (6),
and satisfying

d
do

The conditions for the existence, which is not assured, of
such a g are well known.'? When g exists, there may be a
solution to Eq. (1) of the form x — g(&), which we refer to as
the linear or diffusion solution. This solution, which is not
obtained by means of product separation of variables like the
other solutions, but by sum separation, may be used to com-
plete the u,, so that the union of the #, and the linear solu-
tion can represent any function of @ at a given, i.e., constant,
X.

(9)——g(9)+h(9)— : (10)

Since the linear-in-x part of the diffusion solution must
also satisfy the boundary conditions, in fact at every x, only a
subset of the self-adjoint boundary conditions allow diffu-
sion solutions. It may be seen that for diffusion solutions to
exist in well-posed problems, the self-adjoint boundary con-
ditions must be restricted such that for some constant %

D()af(x 9 _ pp)dLeb) (11)
36
and either
S, @)= f(x,b), if n#£0, (12)

or suitable conditions hold on allowable fif 7 = 0. In this
latter category falls the first example of Sec. I, i.e., Eq. (3),
where D (@) = D (b ) = 0 and fis assumed to be nonsingular.
In the former category, 0, falls Eq. (4), the example dis-
cussed in this section, where periodic boundary conditions of
Sareassumed. In this case we have g = siné, so that x — siné
is the diffusion solution that completes the u, .

The rule is that when 4 is orthogonal to all the u,, so

that it cannot be expanded in the u, , then the solution x

— g(0) exists and may be used to represent 4. Furthermore,
in such a case, g is orthogonal, with weighting function 4, to
all the u, except u,. This may be demonstrated by multiply-
ing Eq. (10) by u,, integrating twice by parts the left-hand
side, and finally substituting from Eq. (6). Invoking the orth-
ogonality of # and u, on the right-hand side, which is ob-
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tained by virtue of Eq. (11), then gives the desired orthogon-
ality property for g,

kjh(e)g(e)uk(e)ﬂ, (13)

which is nontrivial for & #0.

Il. DEGENERACY OF THE ZEROTH EIGENVALUE

In the previous section we noted that the diffusion solu-
tion is orthogonal to all but u, the & = 0 eigenfunction. This
observation naturally leads us to suspect that there may be a
particularly close connection between the diffusion solution
and u,. In this section we explore this connection and derive
the diffusion eigenfunction in a natural way from the limit-
ing form of a separable equation.

For convenience, we consider a specific example, al-
though the conclusions are general. Therefore, considering
the example in Sec. 1, we attempt to break the degeneracy in
Eq. (4) by posing instead

. ar *f

(€ + sinf) o 207’ (14)
again with periodic boundary conditions and in the interval
( — m,m). For €0, the boundary conditions are incompati-
ble with the existence of a diffusion solution, i.e., no g can
solve Eq. (10). It naturally follows, then, to ask how the
diffusion solution can arise in the limit e—0.

For €50, we can solve Eq. (14) by separation of varia-
bles, i.e.,

f=Sa, exp(kx)$, (9), (15)
k
where ¢, satisfies the eigenvalue equation
k(e +sinb)p, =1, (16)

the prime denoting differentiation with respect to 6.

We wish to prove now that there is an eigenvalue k of
order ¢, for € small. This eigenvalue is in addition to the
eigenvalue k = 0. To find this eigenvalue, we assume k ~€
and formally expand

¢=¢0+¢1+¢2+“" (17)
where ¢, ~€"~k". Inserting Eq. (17) into (16), we find to
zeroth order

=0, (18)
whereupon invoking periodicity boundary conditions, we
find ¢, = C,, where C, is a constant. The order-¢ equation
now gives

" = Cuk sin@, (19)
and, again invoking periodicity boundary conditions, we
find

¢, = — Coksind, 20)
which is of order ¢, as supposed. So far £ has not been deter-

mined. However, the order €? equation may now be written
as

¢ 5 =k [(5in6), + €do] = kCo(e — ksin’0),  (21)
which has a solution for periodicity boundary conditions
only if the consistency condition
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fﬁ (e — k sin’0) df = 0 22)

is satisfied. From Eq. (22), we determine k = 2¢. This allows
us to find

¢, = — Cyk€” cos20 + Cy), (23)

where C, ~ € is a constant that may be lumped in with C,.
Thus, we have found an eigenvalue of order € to Eq.
(16), and the corresponding term in Eq. (15) is

a, exptkx)d, = a, (1 + kx + 1k x> 4+ -)(1 — k sinf
— 1k ? cos26 + )
=a, [l +kx —ksin8+ 0 (k?)], 24

where we have expanded the exponential term in kx, assum-
ing that x is O (1) when retaining terms. The eigenfunction in
Eq. (24) is additional to the eigenfunction corresponding to
k = 0 exactly, which is a constant. Thus, we may use the

k = 0 eigenfunction to substract out the constant part of Eq.
(24), i.e,, a,, the remaining part also satisfying Eq. (14). We
write this remaining partasa, k [x — sinf + O (k)] and take
the limit k—0 while taking a, ~ 1/k. Thus, higher-order
terms in k drop out and we are left with the diffusion eigen-
function, x — sin@, as found in Sec. II.

Finally, we note that before removing the constant term
in Eq. (24) and taking the limit e—0, all eigenfunctions are
orthogonal with respect to the weighting function, € + siné.
Taking the limit €0 may be viewed as the merging of two
eigenvalues or a degeneracy in the zeroth eigenvalue. Thus,
the two eigenfunctions remain orthogonal to the remaining
eigenfunctions. They may also be made orthogonal to each
other at any x, but not simultaneously at all x.

These arguments may be applied to the general case,
where 4 is altered perturbatively in such a manner that g no
longer exists. This removes the degeneracy in the lowest ei-
genvalue, and taking the limit of zero perturbation recovers
the diffusion solution in a manner entirely analogous to the
case presented. That the resulting set of eigenfunctions, the
u, plus the diffusion solution, is complete is still not assured,
although this property is now somewhat motivated by the
observations on the degeneracy as a limiting case. In the next
section we show that other degeneracies, not in the zeroth
eigenvalue, are impossible. The proof of the completeness
property is reserved for Sec. V.

IV. SIMPLICITY OF THE NONZERO EIGENVALUES

The results of the previous section concerning the de-
generacy of the zeroth eigenvalue point naturally to the pos-
sibility of degeneracy in the nonzero eigenvalues also. If such
a degeneracy were to occur, then by analogy to the degener-
acy already studied, we may expect solutions of the form

= 8:(0)x exp(kx) + g,(6) exp(kx) . (25)
Substituting into Eq. (1), we see that g, and g, must satisfy
7 ,8(0)=0, (262)

Z8:(0)=h(6)g.(8). (26b)

We assume boundary conditions that allow diffusion solu-
tions, 1.e.,

f@= f®), (27a)
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p@E —p) L0, @27b)

although we prove now that such solutions cannot occur for
k 0.

Note that g, satisfies the usual eigenvalue equation, i.e.,
Eq. (6), and thus has the usual property

b b dg, \?
k h2d0==—J‘D(—-l—> do . 28
J; g1 ) 40 (28)

Now we also find

b b
j @218 — 8L 1) dO= — f b d6—=0, (29)

where the second equality is obtained because the left-hand
side of Eq. (29) vanishes upon application of the boundary
conditions after the obvious integration by parts. Equation
(29), which is a necessary condition for any degenerate solu-
tion, implies that # must change sign. Furthermore, Egs.
(28) and (29) together imply that

b
f D (ﬁ)z 40=0, (30)
LY\ 26

which, in turn, implies that g, must be constant, since D is
not zero at any interior points. However, if g, is constant,
then k£ must be zero to satisfy Eq. (26a). Hence, all nonzero
eigenvalues are nondegenerate or simple, and degenerate so-
lutions can occur only for & = 0, i.e, they are of the type
considered in the previous section. The necessary and suffi-
cient conditions for their occurrence are that the boundary
conditions permit the constant solution to be an allowable
eigenfunction and that Eq. (29) hold, which may now be
written simply as

b
J_h(e)dﬂzO. 31

Although we have shown that merging of roots may
occur only at & = 0, we have not yet limited the number of
roots which may merge, i.e., the order of the degeneracy. For
example, if # roots were to merge at & = 0, then a solution of
the form

f=x"+x"""g(0)+ - +x8,_,(0)+8,0) (32)

could exist, where the coefficient of x ” must obviously be
independent of & as taken. We show now that multiple de-
generacies of the form of Eq. (32) cannot exist for n > 1. For
Eq. (32) to satisfy Eq. (1), the g, must satisfy

b= .Li_%, (33a)
dé do
d Ddgl+l
—Dhg = — —>=>=—, Igi<n, 33b
(n —1)hg, 7R n (33b)

and obey boundary conditions of the type given by Egs. (27).
From Eq. (33a) we find that

b dg] 2 b

JD(——) dez—nfhgldazo, (34)
a de a

where the second equality arises from use of Eq. (33b) when

n+1 and implies that dg,/d8 = 0, which is impossible in

view of Eq. (33a). Hence there cannot exist any solutions of

the type given by Eq. (32) for n > 1.
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In summary the rule is that there is only one possible
degeneracy, namely, the merging of two roots at & = 0. Cor-
responding to this degeneracy, there can be at most one inde-
pendent diffusion solution of the form x — g(@). [Any other
diffusion solution, say x — »(8), is a linear combination of
the above solution and the u, eigenfunction, since g — y sat-
sifies Eq. (6) with & = 0.]

V. PROOF OF CLOSEDNESS

In the next two sections, we prove that any function
defined on the interval (@,b ) and obeying the boundary con-
ditions at @ = a and § = b may be written as a linear combi-
nation of the v, and g, which are found from

Lu (8)=0, (35a)
Log0)=h(@), (35b)

where ., is defined in Eq. (6) and the boundary conditions
are given by Eq. (11) and either Eq. (12) or a suitable replace-
ment as discussed in Sec. I1. The completeness proof that we
offer is motivated by the method of Kneser,'* which was
useful in proving completeness for proper Sturm-Liouville
problems. First we prove a ““closedness” property, i.e., if any
function is orthogonal to all of the eigenfunctions, then it
must be zero. The completeness property follows from the
closedness property. Kneser’s idea, which may be found
within the context of subsidiary theorems in Ref. 12, is to
construct a series solution to a related inhomogeneous prob-
lem. Information concerning the closedness of the eigen-
functions of the homogeneous problem then follows from
the convergence properties of the series.

Motivated in this manner, we first consider the inhomo-
geneous equation

d d

25 D(O)—u(0) + kh(OW(O) + p(©) =0,  (36)
with boundary conditions imposed on v that allow diffusion
solutions to the related homogeneous equation, i.e., Eq. (36)
with p = 0. We construct a solution to Eq. (36) by means of
the expansion

WB)=vy+ kv + -+ k", + e, (37a)
where the terms of the series are found from
d d
—D — =0, 7
40 40 Vo+p (37b)
d
~—D—d~u,,+hu,,,,1 =0, n>l, (37¢)

dé  dé
with the v, obeying the same boundary conditions that v
obeys.

The radius of convergence of the series solution is
boundedbyp = |/|, where/is the smallest (in absolute value)
eigenvalue of the homogeneous system for which

f PO (0)d =0 (38)

does not hold. If nosuch /exists, thenp = oo. For |k | <p, the
series will converge (e.g., Sec. 11.3 in Ref. 12 with minor
modification assures this) so long as successive v, may be
found unambiguously. The condition on the existence of the
series’ coefficients v, imposes restrictions on p in addition to
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those already imposed by Eq. (38). The analysis now departs
somewhat from that for a proper Sturm-Liouville problem,
for which the existence of the v, is assured without further
restrictions on p.

First, we note that upon integrating Eqgs. (37b) and
(37c¢) over the interval (a,b ) and applying the boundary con-
dition in Eq. (11), we obtain

fbp(ﬁ) dg=0, (39a)

b
Jh(&)v,,(@)d&:O, (39b)
the latter relation holding for all #. The restriction on p given
by Eq. (39a) is necessary for the convergence of the series
anywhere and is equivalent to Eq. (38) with / = 0, where
then u, is the zeroth eigenfunction, which is a constant when
the boundary conditions allow diffusion solutions. Never-
theless, the necessity of satisfying Eq. (39a) means that v,
cannot be fully determined from Eq. (37b) alone. Similarly,
the compatibility condition, Eq. (39b), means that Eq. (37¢)
alone is insufficient to determine v, unambiguously. It may
be suspected, however, that the compatibility conditions
provide sufficient additional restrictions to determine the v,, .
We now set out to prove that, in fact, this is so.

Multiplying Eq. (37¢) by g and integrating yields

b b d d )
R DLy )ae
Lg O Jg(de 20 "
b
ey
40" do
‘mb
—Jv ( Ddg)de
LU \de 7 e
b
- f v hdo, (40)

where, upon each integration by parts, the boundary terms
vanished by virtue of the assumed boundary conditions. The
last equality was written on the basis of substitution from Eq.
(35b). Now by virtue of Eq. (39b), the right-hand side of Eq.
(40) vanishes, from which we obtain the orthogonality of g
and the v, with weighting function 4.

Although g is orthogonal to the v,,, it is not orthogonal
to the constant function, as may be shown by multiplying
Eq. (35b) by g and integrating once by parts to obtain

Jhgd@- f (Zg) do £0.. (1)

The inequality above obtains because D does not pass
through zero and g cannot be constant.

It may be seen that each v, is determined from Eq. (37c)
up to an arbitrary additive constant, say of the form

v, =C+R(8), (42)

where R (8) is a known function and C is an unknown con-
stant. We show now that Egs. (40) and (41) are sufficient to
determine C and resolve the ambiguity in the v, . Substitut-
ing for v, from Eq. (42) into Eq. (40) and using Egs. (39b)
and (41), we construct

C= fuRhgdH U (jg) ara]f1 . 43)
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The point is that Cis always determined because the denomi-
nator cannot vanish. It may be noted that simply substitut-
ing v, from Eq. (42) directly into the compatibility condi-
tion, Eq. (39b), would not determine C since 4 has zero area.

It should be noted that, in the above, nonzero k has been
tacitly assumed in the application of the orthogonality rela-
tions, i.e., Egs. (39b) and (40). When & vanishes, these rela-
tions, and hence Eq. (43) also, do not necessarily hold and C
cannot be uniquely determined. In fact, when k& = O, the so-
lution to Eq. (36) is not unique and can be determined only
up to an arbitrary constant. Similarly, an additional con-
traint is needed to uniquely determine the solution to Eq.
(37b), which is identical to Eq. (36) with k = 0. Here, nearly
any additional constraint will do; we could, for example,
assume that Eq. (43) holds also for & = 0 in which case a
unique solution to Eq. (36) exists, even for k£ = 0, and may be
constructed by means of the series for |k | <p.

Finally, multiplying Eq. (37b) by g, integrating, and
manipulating the subsequent expression in a manner analo-
gous to Eq. (40), we obtain

b
Jgpd@:O, (44)

which represents an additional constraint on p if the series is
to have a nonzero radius of convergence. It should be appre-
ciated that this condition is essentially anticipated by the
resemblance of Eq. (44) to Eq. (38) in view of the discussion
given in Sec. III.

To recapitulate, we have so far shown that if Egs. (39a)
and (44) hold, then the series solution converges in a finite
interval about k = 0, namely for |k | <p. The series coeffi-
cients may be determined uniquely order by order by means
of Egs. (37) and (43). We now proceed to exploit the fact that
if p = w0, i.e., if Eq. (38) holds for all /, then v is an entire
function of k.

We consider two cases of Eq. (37¢), say

d . d
- D_dH v, +hv, , =0, (452)
d . d
2 ploy, . +h, = 45b
a0 do (455)

Multiplying Eq. (45a) by v,, ., and Eq. (45b) by v, sub-
tracting, and integrating, we obtain

b
J- W1 Vy_y —0,0,)hd6=0, (46)

where we made use of the boundary condition, Eq. (11). We
may note that since n and m were arbitrarily chosen, the
definition

b
quj v,v,hdd, n+m=gq, “7

is unambiguous.

For proper Sturm~Liouville problems, the proof pro-
ceeds somewhat more simply as W, is always non-negative
for ¢ even, since 4 is non-negative. This simplification does
not occur in our case, where # does, in fact, pass through
zero. We can, however, show that W is always non-negative
for g odd. We do so by multiplying Eq. (45a) by v, and
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integrating to obtain

b fdv \? b
041)(‘16"‘) d&thv,,vn,, do=W, . . (48)

We may also consider the quantity

o= |e(G) 2G5
=), 1% \Ge 7
=a2W2n11 +2aﬁWm+l1—l + [)’ZWZM—I ’ (49)

where a and 3 are arbitrary constants. Since § is non-nega-
tive for any choice of @ and 3, we must have

Wrzn tn—t <u/ZnAI W2m~l . (50)

Let g be an odd integer. From Eq. (50) we see thatif W, =0
for any g, then all the &, must be zero, except possibly for
W,. We now, in fact, show that W, must then also be zero,
although this is not implied by Eq. (50). Using instead Eq.
(48) with n = 2, we see that W = Oimplies that dv,/d6 = 0,
which, in turn, implies from Eq. (45a) with n = 2 that

hv, = 0, which requires that ¥, vanish too. Hence, either all
the W, vanish or none do. Suppose first that none do. Since
by Eq. (48) W, >0, Eq. (50) implies the inequalities

Wy W Wy Pen (51)
w, W, Ws Wi s
which in turn implies that
Wiy, o 2T"W,, (52)
where we have defined
T=W.,/W,>0. (53)

Now when v is an entire function of & [i.e., when p is
orthogonal to all the u, and g, with a constant as the weight-
ing function, as in Egs. (38) and (44)], then so is the quantity

b

Juu(,h do=Wy+ kW, + -+ k"W, + . (54)

The assumption W, #0, however, leads to a contradictory

statement, since the sum of the subseries of all the odd terms
of the series in Eq. (54),

i k2m+l W2m " >kwli(k2T)m’
a 0

m o

(55)

clearly diverges for some k. Hence, we have proved by con-
tradiction that W, = 0 and, in particular, that W, = 0,
which implies that

which means that v, must be a constant. This latter state-
ment, in turn, implies from Eq. (37¢) that Av, = 0, which
finally implies from Eq. (37b) that p = 0.

What we have proved is that if p is orthogonal to all the
u, and g, then p = 0. This closedness property is shown in
the next section to imply completeness, i.e., that any suitable
p may be constructed as a linear combination of the 4, and g
in the manner

p6)=dc,u(0)+c,80), (57)
k

which is the completeness relation that we seek. The con-
stants ¢, and ¢, may then be determined easily from the
orthogonality properties of the eigenfunctions. We multiply
Eq. (57) by either 4, Au,, or Ag and integrate to obtain,
respectively,

b b
cgf hg db = f hp df, (58a)
ab a )
c,J hu; d6 = f hpu,df, 1+#0, (58b)
ab Z b
cof hgd9=fpgh d9—cgfg2h de . (58¢c)

The constants are all determined from Egs. (58) since all the
integrals on the left-hand sides have been shown not to van-
ish. The case / = 0 is excluded in Eq. (58b) for just that rea-
son, since & has zero area, and instead use is made of Eq.
(58c) to determine ¢,,.

VI. PROOF OF COMPLETENESS

In order to prove that the closedness of the eigenfunc-
tions implies their completeness, we begin by pointing out
that the asymptotic behavior of large eigenvalues is given by

n=0, il’ 2, (59)

where n indexes the &, and spans ( — 0, o). In contrast, for
Sturm-Liouville problems, &, ~n? where n'spans only

(0, «0). The validity of Eq. (59) can be demonstrated by
means of matched asymptotic expansions. For example, sup-
posethat H =h /D passes through zeroonly oncein the inter-
val (a,b), say at @ = 0, with finite positive slope C> 0. We
can then solve Eq. (6) away from 6 =~ 0 by means of a WKB
expansion, which matches onto Airy functions near & = 0.

kn ~n|n| ’

b b 1 .
0= W]Ef v woh dngp(d_vl.)‘dg’ (56) Doing so for k— + o, we find 4, = au,(8) + Buy(0),
a a db where a and 8 are constants to be determined from the
boundary conditions, and
[ g
g exp(—k [ (H @991 da'), 6>0,
2\/ T 0
u (0) = § Aik '°C'%9), 60, (60a)
1 . T
— —H]‘““sm(k‘/zf[~f1(0’]'/2d9’+ —), 6 <0,
L Vo ¢ ) 4
1 6
— H ' exp (k '”ZJ [H (@] do ’), 6>0,
us@)= 1V r b (60b)
0, 650.
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The point is that in order to satisfy self-adjoint boundary
conditions, k ' is determined only up to multiples of 277",
where I is a finite constant, whence Eq. (59) follows. For
example, for periodicity boundary conditions, we have

ﬁ~ _ﬂ R l/ZJ.O _ 1,2 m
a_[ H{a) sm(k a( Hy"do+ 4)’
(61)

and k is determined from

tan (k "zf(—H)"2d6+ %): [%‘g’)]m. (62)

We now turn to the question of uniform convergence.
Consider the functions which represent the decomposition
of finto orthogonal modes, i.e.,

Fy(0)=u,( )f fhu, d6, (63)

where u, is the eigenfunction corresponding to k,, and is
normalized according to

b
J hut =1. (64)

Note that from the asymptotic representation of the u, for
large n, we see that H '"“u,, is uniformly bounded for all n and
6.

Suppose that f obeys the same boundary conditions as
the u, and is twice differentiable. From Eq. (6) we have

b
F, =k,,“u,,f L p %y s
./ a6 " o

o (P d ,d
k, u,,J;u,, deDdHde. (65)
By virtue of the boundedness of H 'u,, and the integrability
of the weak singularity (i.e., since u, ~ H "'"*} in the inte-
grand on the right side of Eq. (65), it is seen that

HYF ~1/k, ~1/n*, as n—+ w, (66)
where we now made use of Eq. (59). Hence, the series of
partial sums of H "*F, is absolutely and uniformly conver-
gent in the interval (a,b ).

We are now in a position to demonstrate that closedness
implies at least a mild type of completeness, i.e., complete-
ness in that any continuous twice-differentiable function f
may be uniformly approximated. This restrictive or narrow
property is needed before we relax the conditions on fto
include all continuous functions. Proceeding in this vein, we
define the function

$(0)=,(6)— Zuk(b’)f u (@M (@) f(07)d6’
k a
=/f(6)— Yui(6)a; . (67)

Consider the quantity

b b
J hulzukak = J. hu, |h I_MZV’ |"u,a,
a k a k
b
= zakf huu, =a,, (68)
k a
where reversing the order of integration and summation to
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obtain the second equality is clearly allowable since the se-
ries is uniformly convergent by virtue of Eq. (66). Thus, we
have for every u,

b b
Jqﬁhu, d6=fﬂ1u,——a,=0, (69)

which implies from the closedness of the u, that ¢4 = 0.
Hence, from Eq. (67) we see that the u, can represent fev-
erywhere except possibly at the isolated point 8 = 0, which is
the mild completeness property we sought to prove. It is now
possible to follow relatively standard but tedious procedures
to show that the above property implies that, in fact, any
continuous f, not necessarily twice-differentiable, may be
uniformly approximated by the u, (except where 8 = 0).
This last step of the completeness proof'is given in Appendix
A.

Note that this proofrelied on a finite first derivative of 4
at § = 0 in order to write down the asymptotic expansion in
terms of Airy functions. Nevertheless, it is easy to show that
similar conclusions may be drawn when this derivative van-
ishes or when more general (but self-adjoint) boundary con-
ditions are used. The case of 4 vanishing over an interval is
discussed in Sec. VIII.

We now show that the proved completeness property
on the interval (a,b ) guarantees that if a solution to Eq. (1)
exists, then it can be expanded in the separation-of-variables
eigenfunctions. For f may then be put in the form

f=24,(x)u,(0)+ Bx)[x —g6)] (70)

k
and it suffices to show that the A, and B are in fact given by
A, (x) =c, e (71a)
B= —c,, (71b)

where the ¢, and c, are constants found, say, from evaluat-
ing Eqs. (58) at x = 0. Equations (58) may now be used to
establish Eqgs. (71). For example, using Eq. (58b) and assum-
ing the «, have been normalized, we have for X #0

A, (x) =f Shu, db, (72)

and differentiating by x gives

d b d
EAk(x) —_—J;huk “(édﬁ
bod d
= —D—fdo
Lu‘da il
b
d d
— = D= 4 do
Lfde a0
b
:fkfhukde
= kA, (x), (73)

where in deriving the third equality we integrated twice by
parts. Thus, Eq. (71a) follows for k& #0. In a similar manner,
A,(x) and B (x) may be shown to be constant as required.
VIl. COMPLETENESS ON THE HALF-INTERVAL

In Sec. VI, we showed that the u, are complete on the
interval (a,b ). This implied that the expansion by separation
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of variables could be used to represent feverywhere, when f
exists.

However, the existence of ffor arbitrary initial and final
conditions indicates that the », possess a far stronger prop-
erty than completeness on the interval (a,b ). By taking the
limit d— o, it can be seen that only the non-growing-in-x
eigenfunctions can contribute at x = 0, while only the non-
decaying eigenfunctions can contribute at x = d. Thus, as-
suming that 4 vanishes only once, say, A (0) = 0, we see that
the exponentially decaying eigenfunctions, supplemented by
the constant and linear eigenfunctions, should be complete
on the interval where 4 is positive, say in (0,6 ). Similarly, the
growing eigenfunctions, also supplemented by the constant
and linear eigenfunctions, should be complete in the interval
(2,0). (There is no problem in switching the order of taking
the limit d— oo with taking the limit of the number of eigen-
functions becoming infinite, since the higher order eigen-
functions, decaying or growing most rapidly, certainly can-
not contribute at both boundaries.)

Thus, it may be seen that existence of the solution and
its representability by the eigenfunction expansion should
imply the further completeness property of the u,, that
“half” the u, are complete in the interval (0,6 ) while the
other half are complete in the interval (¢,0). Furthermore, it
may presumably be shown that the converse is also true, i.e.,
if the u, possess this completeness property, then f must
exist. This should follow from a construction of fby means of
a convergent, iterative scheme, where the boundary condi-
tions are alternatively satisfied by the decaying set of u, at
x = 0 and the growing set at x = d.

Unfortunately, we have not been able to prove the com-
pleteness of the eigenfunctions on the half-interval, which
would have, from the above argument, presumably provided
a general and independent proof of the existence of solutions
to Eq. (1). We must therefore content ourselves, at present,
with the reverse argument. Thus, in special cases, where we
may rely on other proofs for existence, then we can infer that
the associated eigenfunctions possess a completeness proper-
ty on the half-inteval.

To demonstrate how the eigenfunctions may be used to
construct the solution, and to provide additional support for
the conjecture that they are complete on the half-interval, we
numerically consider one example of Eq. (1), namely

af &f
0'(6)'5‘ = —8—97, —7T<9<77', O<x<d: (74)
where
1, 6>0,
o(6) = {—1, <0, 7

and periodicity boundary conditions are assumed. This par-
ticular example was chosen for numerical analysis because
the eigenfunctions are particularly simple. Since o(@) has
zero area, we expect a linear eigenfunction of the form

X — ugo(0), where

_ [6—=6), 650,
”00(9)‘[9(7+9), 6 <0.

The eigenfunctions that are even about #/2 in the interval
(0,7) are of the form, for n > 0,

(76)
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cos[4,(60 — 7/2)], 6> 0,
u,(0)= an
C, cosh[4,(0 + 7/2)], 6<0,
where
C, = [cos(A,7/2)][cosh(A,7/2)]" (78)
and A, solves
cosd, 7 = sechd, 7. (79)

For n <0, i.e., for the decaying eigenfunctions of the form
u,(0)exp(—A,x),wehaveu, () =u_,(— 0).Similarly,
there are eigenfunctions that are odd about # = 77/2 in the
interval (0,7). Since we will assume even boundary condi-
tions, the odd functions need not be considered here.

Part of the reason for giving these eigenfunctions in de-
tail is that as n— oo the u,, exponentially fast approach
cos[(2n + 1)(6 — 7/2)]. If the u, are complete on (0,7),
which we will demonstrate numerically, it is expected that
the cos[(2n + 1)}(6 — 7/2)], supplemented by a constant or
roughly constant function, must also be complete on (0,7).
Nevertheless, despite its simple form, we have been unable to
analytically demonstrate that the set cos[(2n + 1)(6 — 7/2)]
is complete, which presumably might be an easier task than
to demonstrate that property for the u,,.

In Fig. 1 we show the results of numerically fitting the
eigenfunction expansion to boundary data using the method
of least squares. The boundary conditions are that f(6 <0,
x=d)=0andf(6>0, x = 0) has the Gaussian type of de-
pendence shown in Fig. 1(a). Here, we have taken d = 10.
We find that the root-mean-square difference between the
eigenfunction expansion and the given bundary data con-
verges to zero as 1/N, where N is the number of eigenfunc-
tions employed. This type of convergence is indicative of the
presence of Gibb’s phenomenon in this problem. Indeed,
some such phenomenon is expected since the solution on the
boundary cannot be analytic over the whole interval
( — m,m). For example, at x = d, there cannot exist a smooth
fit of any non-zero solution in the region 8> 0 to the zero
data given in the region 8 < 0. (Parenthetically, we remark
that in analogy with the examples given in Sec. I, the zero
data correspond to a condition of only outgoing particles

| T T
~ (a) 7
- X=0
f oL N
0 | i
-7 -m/2 0 n/2 m
0.t T T T
(b}
f T_ X=d )
O_ 1 1
-7 -7T/2 0 T/2 m

FIG. 1. Data on the boundaries. (2) f(€) vs € on the boundary at x = 0; for
6> 0, the data is given, whereas for 8 <0 the data is computed, using 250
eigenfunctions. (b) f(8) vs & on the boundary at x = 10; for € < 0, the data is
given, whereas for > 0 the data is computed. Note change of scale.
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FIG. 2. Surface of f(¢,x) using the boundary data given n Fig. 1.

present at one end of the collision region.) In Fig. 2 we show,
using a large number of eigenfunctions, fas a function of
both x and 6. Note that, except near the boundaries, fis
described mainly by the linear solution.

Numerical results for large d are similar. For very large
d, only the decaying eigenfunctions remain finite. Thus,
there is numerical evidence, at least in this case, for the con-
jectured completeness property on the half-interval.

A remark, appropriate before closing this section, is
that the eigenfunctions «, , which are supposed complete on
(0,7), pass through zero n times in that interval and not at all
in ( — 7,0). The reverse holds true for those eigenfunctions
complete on the other half-interval.

Viil. WHEN A(6) VANISHES OVER AN INTERVAL

When A (8) vanishes over an interval, it turns out that
the closedness and completeness properties of the #, do not
extend over the full interval (a,b ). Instead, it may be shown
that these properties extend over the interval (a,b ) with the
exclusion of the subintervals over which # vanishes. For ex-
ample, in deducing the closedness property following Eq.
(56), we relied on the vanishing of Av,. Were £ to vanish over
an interval, then we could conclude only that p vanishes
where /4 does not. Similarly, the conjectures regarding prop-
erties on the half-interval would then apply only where # is
either positive or negative.

That the completeness property fails to apply where
h = 0 presents no difficulty in describing the solution to Eq.
(1) by means of an eigenfunction expansion. In fact, it can be
shown via an energy integral (in the manner described at the
end of Sec. 1) that specifying boundary conditions at x = 0
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where A > 0 and at x = d where 4 < 0 implies uniqueness of
the solution. Hence, nothing can be specified where # = 0
anyway, which is eminently consistent with an eigenfunction
expansion wherein the eigenfunctions are complete on the
interval that excludes the set where # = 0.

IX. SUMMARY AND CONCLUSIONS

In a manner of summary, we remark that the important
features in this work are the proof of completeness of the
u,.(8) on (a,b), the criteria for the existence of a diffusion
solution, and the conjecture regarding the completeness of
half of the 4, () on the interval (a,0) or (0,6).

The completeness of the eigenfunctions u, (€ ) on the
interval (a,b ), which was proved in Secs. V and VI, guaran-
tees that when a solution to Eq. (1) exists it may be expanded
in the form given by Eq. (5). It should be pointed out, howev-
er, that it may not always be practical to employ the expan-
sion in numerically solving Eq. (1), since the u, themselves
may be hard to compute and, once computed, do not enjoy
useful orthogonality properties for properly posed boundary
value problems. Nevertheles, we have seen that when the u,
are easily found, as in the example given in Sec. VII, the
eigenfunction expansion is certainly convenient.

The criteria for the existence of the diffusion solution
allow the gathering of partial information about the solution
without obtaining it completely. For example, the existence
of a diffusion solution to Eq. (3) implies the well-known fact
that the amount of sunlight reaching earth through a nonab-
sorbing cloud layer drops off only as the reciprocal of the
layer thickness rather than with an exponential dependence
on it.

Finally, the conjecture regarding the half-interval prob-
lem perhaps has the farthest reaching implications of all and
its verification is worthy of future investigation. The correct-
ness of the conjecture should imply an independent proof of
the existence of a solution to the related two-way diffusion
equation. There is the added academic interest in that the
conjecture relates to functions which do not satisfy a Sturm-
Liouville equation on the interval upon which the complete-
ness property is supposed. This is in contrast to the other
findings here, which may be viewed somewhat as a supple-
ment or extension to the standard Sturm-Liouville theory.

The proof of the conjecture regarding completeness on
the half-interval has now been provided by R. Beals."
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APPENDIX A

In this appendix we show that the capability of the ei-
genfunction expansion to represent continuous twice-differ-
entiable fimplies the capability to also represent any f'that is
merely continuous. The proof of this step, which supple-
ments the completeness proof in Sec. VI, follows Ref. 12,
Sec. 11.52. The idea is to compare the expansion in the u,,
with a uniformly convergent expansion in a known set of
complete orthogonal functions, y,, . For simplicity, we con-
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sider the intervals (@,0) and (0,5 ) separately. Assume that the
Y. aredefined on (0,6 ) and are orthogonal with respect to the
weighting function v(8) > 0. We define the y,, to be zero for
& < 0. Then we can define the partial sums

v @=[ £ 3 1, @un O 1) dt, (Ala)

ox@)=[ SO . O M) dr,

where o, (6) is known to converge uniformly to /(8 ) in the
interval (0,6 ), and we would like to prove the same for
S+(6). Thus, we will try to show that

(Alb)

Sy(@) —or(6)—0 (A2)
uniformly in (0,6 ) as ¥ —cc.
To expedite matters, we define the function
N
Py, t)y= Y [u,(0)u,(t)+u_,(0)u_,()
n=20
—X. @)y, ()], (A3)

where, for simplicity of notation, the diffusion solution, if it
exists, is not written explicitly but is understood to be includ-
ed in the summation. Now if G (8) is continuous and twice
differentiable, then

f%wmmww

uniformly in (0,6 ) as N— oo . This is a consequence of the
uniform convergence of S, to such G (proved in Sec. VI).
The same property holds for the ¢, by assumption. Equa-
tion (A4) is obtained since their difference must then uni-
formly converge to zero.

Consider the sequence of functions

G,G,,..G,,
such that the G, are continuous, twice-differentiable func-
tions that uniformly converge to fin (0,6 ). The G, could be,

for example, n-term polynomial or Fourier approximations
to . We may then write

&m~mw=fmmnvm-mmwr

(A4)

b
+ f PDy(6,1)G,, () dt. (AS)
If @,(6,t) is uniformly bounded for all N,8, and ¢, then the
first integral in Eq. (AS5) may be made arbitrarily small by
taking m large enough. Then, by Eq. (A4), the second inte-
gral can be made arbitrarily small by taking NV large enough.
Hence, Eq. (A2) follows.

It remains to show that @, (6,¢) is, in fact, uniformly
bounded. For simplicity, we begin with a specific example,
namely that considered in Eq. (74). We take the y, to be
cos[2n(6 — 7/2)). Since only functions even about 7/2 are
considered here, it suffices to examine the interval (0,7/2).
Consider one of the contributions to @, , which may be writ-
ten as

A Eicos[(Zn + )8 ] cos[(2n + L)t ]
¥,
— cos(2n8) cos(2nt)
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= i%{ces[@n + D] — cos(2ny)}

+ L[cos(2n + 1)z — cos(2nz)] , (A6)
where y=8 + rand z=6 — ¢. Itis assumed that N, is a suffi-
ciently large eigenvalue, so that the asymptotic representa-
tion of the u,, as cos(2n + 1)@ is valid. We note, for example,
that

N eiz/fZ -1
Y cos(2n + L)y — cos2ny = Re (
N,y e

(eZ.‘Vill‘ _1) ) R
(A7)

which is obviously uniformly bounded. Thus A4 is bounded.

The other contribution to @,(6,¢) arises from the de-
caying eigenfunctions in the interval (0,5 ), and may be writ-
ten as

N N

B=Yu_,6)u._,(t)~Yexpl —Qn+HO+1)],

v, ~

' (A®)
which is uniformly bounded for 6 in any closed interval in
(0,77/2) that does not include zero. Since @,,(6,7)
=A + B + (a finite number of terms), it follows that
@, (6,1) is similarly uniformly bounded in any closed inter-
val not including zero.

This property of @, (6,¢) implies, through Eq. (A5),
that S, (¢) uniformly converges to any continuous (8 ) in
any closed interval in (0,7/2) not including the origin. The
exclusion of the origin [i.e., where 4 () = 0] from the com-
pleteness proof is expected, as in other aspects of this prob-
lem. In a similar manner, it can be shown that S, (8) con-
vergestof(€)intherestoftheinterval ( — 7,7). Note that for
periodicity boundary conditions, the endpoints, 8 = + 7,
must be excluded in the same manner and for the same rea-
son that the point 8 = 0 is excluded from the interval over
which the completeness holds.

The general case in which / passes through zero at
6 = 0 is handled similarly. From the asymptotic expansion
oftheu,, given by Egs. (60), it can be seen that the #,, asymp-
totically approach sinusoidal or decaying functions. The
Airy function behavior occurs only near the origin, so that
for any closed interval not including the origin, it is possible
to begin the summation at a large enough N, as in Egs. (A7)
and (A8), that the asymptotic behavior is valid. From the
example given above, it is clear that the @, would be similar-
ly bounded. For one may, for example, pick the y, such that

d d

g D g X TR, =0,
with Sturm-Liouville-type boundary conditions at the end-
points of either interval, (0,5 ) or (a,0). The eigenfunctions y,,
would then be asymptotically sinusoidal, but shifted from
the u,,, a case known from Eq. (A7) to have the requisite
properties.

2N ]
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